cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339355 Maximum number of copies of a 12345 permutation pattern in an alternating (or zig-zag) permutation of length n + 7.

Original entry on oeis.org

8, 16, 64, 112, 272, 432, 832, 1232, 2072, 2912, 4480, 6048, 8736, 11424, 15744, 20064, 26664, 33264, 42944, 52624, 66352, 80080, 99008, 117936, 143416, 168896, 202496, 236096, 279616, 323136, 378624, 434112, 503880, 573648, 660288, 746928, 853328, 959728, 1089088, 1218448
Offset: 1

Views

Author

Lara Pudwell, Dec 01 2020

Keywords

Comments

The maximum number of copies of 123 in an alternating permutation is motivated in the Notices reference, and the argument here is analogous.

Examples

			a(1) = 8. The alternating permutation of length 1 + 7 = 8 with the maximum number of copies of 12345 is 13254768. The eight copies are 12468, 12478, 12568, 12578, 13468, 13478, 13568, and 13578.
		

Crossrefs

Programs

  • Maple
    a := proc(n2) local n; n:= floor(n2/2): if n2 = 2*n then 32*binomial(n+4,5) - 16*binomial(n+3,4) else n:=n+1; (4*n*(n^4+5*n^3+10*n^2+10*n+4))/15 fi end; seq(a(n), n=1..20); # Georg Fischer, Nov 25 2022

Formula

a(2*n) = 16*A005585(n) = 32*binomial(n+4, 5) - 16*binomial(n+3, 4).
a(2*n-1) = 8*A033455(n) = (4*n*(n^4 + 5*n^3 + 10*n^2 + 10*n + 4))/15.
D-finite with recurrence: (n-1)*((n-3)^2+9*n-6)*a(n) - (2*(n-3)^2+20*n-16)*a(n-1) - (n+5)*((n-3)^2+11*n-2)*a(n-2) = 0. - Georg Fischer, Nov 25 2022