A339360 Sum of all squarefree numbers with greatest prime factor prime(n).
1, 2, 9, 60, 504, 6336, 89856, 1645056, 33094656, 801239040, 24246190080, 777550233600, 29697402470400, 1250501433753600, 55083063155097600, 2649111037319577600, 143390180403000115200, 8619643674791667302400, 534710099148093259776000, 36412881178052121329664000
Offset: 0
Keywords
Examples
The initial terms are: 1 = 1, 2 = 2, 9 = 3 + 6, 60 = 5 + 10 + 15 + 30.
Links
- Robert Israel, Table of n, a(n) for n = 0..349
Crossrefs
A048672 takes prime indices to binary indices in squarefree numbers.
A072047 counts prime factors of squarefree numbers.
A339195 has this as row sums.
A002110 lists primorials.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A056239 is the sum of prime indices of n (Heinz weight).
A319246 is the sum of prime indices of the n-th squarefree number.
A319247 lists reversed prime indices of squarefree numbers.
A329631 lists prime indices of squarefree numbers.
Programs
-
Maple
f:= proc(n) local i; `if`(n=0, 1, ithprime(n)) *mul(1+ithprime(i),i=1..n-1) end proc: map(f, [$0..20]); # Robert Israel, Dec 08 2020
-
Mathematica
Table[Sum[Times@@Prime/@stn,{stn,Select[Subsets[Range[n]],MemberQ[#,n]&]}],{n,10}]
Formula
For n >= 1, a(n) = A054640(n-1) * prime(n).
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 08 2025