A339377 Number of triples (x, y, z) of natural numbers satisfying x+y = n and 2*x*y = z^2.
1, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 4, 2, 2, 4, 2, 4, 6, 4, 2, 4, 4, 2, 4, 2, 2, 8, 2, 2, 4, 2, 2, 10, 4, 2, 6, 2, 4, 4, 2, 4, 4, 4, 4, 6, 2, 2, 4, 2, 2, 10, 2, 2, 8, 4, 2, 10, 2, 4, 4, 2, 2, 6, 2, 2, 10, 4, 4, 4, 2, 2, 6, 4, 2, 4, 4, 4, 4, 2, 2, 10, 4, 4, 4, 4, 4, 4
Offset: 0
Keywords
Examples
a(9) = 6 and these 6 solutions are: (0, 9, 0), (1, 8, 4), (3, 6, 6), (6, 3, 6), (8, 1, 4), (9, 0, 0). a(1987) = 4 and these 4 solutions are: (0, 1987, 0), (529, 1458, 1242), (1458, 529, 1242), (1987, 0, 0); this is the answer to the Olympiad problem in link.
References
- Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 4 of Austrian Mathematical Olympiad 1987, page 29 [Warning: solution proposed in this book has a mistake with (x, y, z) = ([0, 1987], 1987-x, sqrt(2xy))].
Links
- The IMO compendium, Problem 4, 18th Austrian Mathematical Olympiad, 1987.
- Index to sequences related to Olympiads.
Comments