A339410 If the n-th semiprime is p*q with p<=q primes, a(n) is the area of the triangle with vertices (1,p), (p,q) and (q,p*q).
1, 1, 6, 2, 9, 8, 6, 35, 40, 54, 10, 104, 54, 135, 24, 209, 126, 64, 70, 90, 350, 405, 72, 154, 594, 190, 740, 64, 819, 280, 216, 330, 989, 54, 1274, 504, 22, 1595, 256, 550, 1710, 640, 714, 270, 2079, 874, 2345, 648, 56, 2484, 90, 2925, 1144, 286, 3239, 936, 1450, 3740, 1560, 216, 832, 4464
Offset: 1
Examples
For n = 5 the 5th semiprime is 14=2*7, and the area of the triangle with vertices (1,2), (2,7) and (7,14) is a(5)=9.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # for semiprimes <= N SP:= select(t -> numtheory:-bigomega(t)=2, [$4..N]): f:= proc(n) local p,q; p,q:= (min,max)(numtheory:-factorset(n)); (q-1)*abs(p^2-q)/2 end proc: map(f, SP);
-
Mathematica
ar[{a_,b_}]:=Abs[Det[{{1,a,b},{a,b,a b},{1,1,1}}]]/2; ar/@(If[Length[#]==1,Flatten[ {#,#}],#]&/@(FactorInteger[#][[;;,1]]&/@Select[Range[200],PrimeOmega[ #] == 2&])) (* Harvey P. Dale, Mar 05 2023 *)