A339428 Triangle read by rows: T(n,k) is the number of connected functions on n points with a loop of length k.
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 9, 4, 1, 1, 48, 37, 23, 11, 4, 1, 1, 115, 96, 62, 35, 14, 5, 1, 1, 286, 239, 169, 97, 46, 18, 5, 1, 1, 719, 622, 451, 282, 145, 63, 21, 6, 1, 1, 1842, 1607, 1217, 792, 440, 206, 80, 25, 6, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 4, 3, 1, 1; 9, 6, 3, 1, 1; 20, 16, 9, 4, 1, 1; 48, 37, 23, 11, 4, 1, 1; 115, 96, 62, 35, 14, 5, 1, 1; 286, 239, 169, 97, 46, 18, 5, 1, 1; 719, 622, 451, 282, 145, 63, 21, 6, 1, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
PARI
\\ TreeGf is A000081 as g.f. TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} ColSeq(n,k)={my(r=TreeGf(max(0,n+1-k))); Vec(sumdiv(k, d, eulerphi(d)*subst(r + O(x*x^(n\d)), x, x^d)^(k/d))/k, -n)} M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~)) { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }
Formula
G.f. of k-th column: (1/k)*Sum_{d|k} phi(d) * r(x^d)^(k/d) where r(x) is the g.f. of A000081.