A339446 Number of compositions (ordered partitions) of n into distinct parts such that the smallest part is equal to the number of parts.
1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 8, 8, 14, 14, 20, 20, 26, 26, 32, 32, 62, 62, 92, 116, 146, 170, 224, 248, 302, 350, 404, 452, 530, 698, 776, 968, 1166, 1478, 1700, 2132, 2474, 3050, 3512, 4208, 4814, 5750, 6476, 7556, 8522, 10562, 11672, 13952, 16022, 19286, 22316, 26540
Offset: 1
Keywords
Examples
a(12) = 8 because we have [10, 2], [2, 10], [5, 4, 3], [5, 3, 4], [4, 5, 3], [4, 3, 5], [3, 5, 4] and [3, 4, 5].
Links
Programs
-
Mathematica
nmax = 60; CoefficientList[Series[Sum[k! x^(k (3 k - 1)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Formula
G.f.: Sum_{k>=1} k! * x^(k*(3*k - 1)/2) / Product_{j=1..k-1} (1 - x^j).