A339465 Primes p such that (p-1)/gpf(p-1) = 2^q * 3^r with q, r >= 1, where gpf(m) is the greatest prime factor of m, A006530.
19, 31, 37, 43, 61, 67, 73, 79, 103, 109, 127, 139, 157, 163, 181, 199, 223, 229, 241, 271, 277, 283, 307, 313, 337, 349, 367, 373, 379, 397, 409, 433, 439, 457, 487, 499, 523, 541, 577, 607, 613, 619, 643, 673, 709, 733, 739, 757, 787, 811, 823, 829, 853, 877, 907, 919
Offset: 1
Keywords
Examples
31 is prime, 30/5 = 6 = 2*3 hence 31 is a term. 37 is prime, 36/3 = 12 = 2^2*3 hence 37 is a term. 127 is prime, 126/7 = 18 = 2*3^2 hence 127 is a term.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.
Links
- P. Erdős and C. Pomerance, On the largest prime factors of n and n+1, Aequationes Math. 17 (1978), pp. 311-321.
Crossrefs
Programs
-
Magma
s:=func
; [p:p in PrimesInInterval(3,1000)|PrimeDivisors(a) eq [2,3] where a is (p-1) div s(p-1)]; // Marius A. Burtea, Dec 09 2020 -
Maple
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)): is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2, 3}: select(is_a, [$3..919]); # Peter Luschny, Dec 13 2020
-
Mathematica
q[n_] := PrimeQ[n] && Module[{f = FactorInteger[n - 1]}, (Length[f] == 2 && f[[2, 1]] == 3 && f[[2, 2]] > 1) || (Length[f] == 3 && f[[2, 1]] == 3 && f[[3, 2]] == 1)]; Select[Range[1000], q] (* Amiram Eldar, Dec 09 2020 *)
Extensions
More terms from Marius A. Burtea, Dec 09 2020
Comments