cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339465 Primes p such that (p-1)/gpf(p-1) = 2^q * 3^r with q, r >= 1, where gpf(m) is the greatest prime factor of m, A006530.

Original entry on oeis.org

19, 31, 37, 43, 61, 67, 73, 79, 103, 109, 127, 139, 157, 163, 181, 199, 223, 229, 241, 271, 277, 283, 307, 313, 337, 349, 367, 373, 379, 397, 409, 433, 439, 457, 487, 499, 523, 541, 577, 607, 613, 619, 643, 673, 709, 733, 739, 757, 787, 811, 823, 829, 853, 877, 907, 919
Offset: 1

Views

Author

Bernard Schott, Dec 09 2020

Keywords

Comments

Paul Erdős asked if there are infinitely many primes p such that (p-1)/A006530(p-1) = 2^k or = 2^q*3^r (see Richard K. Guy reference).
It is not known if this sequence is infinite.
Proposition: if prime p is a term, then p is of the form 6*m+1 (A002476).

Examples

			31 is prime, 30/5 = 6 = 2*3 hence 31 is a term.
37 is prime, 36/3 = 12 = 2^2*3 hence 37 is a term.
127 is prime, 126/7 = 18 = 2*3^2 hence 127 is a term.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.

Crossrefs

Cf. A074781 (ratio=2^k), A339466 (ratio <> 2^k and <> 2^q*3^r).
Subsequence of A002476.

Programs

  • Magma
    s:=func; [p:p in PrimesInInterval(3,1000)|PrimeDivisors(a) eq [2,3] where a is (p-1) div s(p-1)]; // Marius A. Burtea, Dec 09 2020
  • Maple
    alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
    is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2, 3}:
    select(is_a, [$3..919]); # Peter Luschny, Dec 13 2020
  • Mathematica
    q[n_] := PrimeQ[n] && Module[{f = FactorInteger[n - 1]}, (Length[f] == 2 && f[[2, 1]] == 3 && f[[2, 2]] > 1) || (Length[f] == 3 && f[[2, 1]] == 3 && f[[3, 2]] == 1)]; Select[Range[1000], q] (* Amiram Eldar, Dec 09 2020 *)

Extensions

More terms from Marius A. Burtea, Dec 09 2020