cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343801 Total sum of the parts in all partitions counted by A339479(n).

Original entry on oeis.org

0, 1, 5, 25, 121, 583, 2789, 13287, 63149, 299697, 1421107, 6735253, 31911985, 151174893, 716081551, 3391722505, 16064368343, 76084921797, 360353446761, 1706695118265, 8083167563465, 38283027343193, 181313615940197, 858725280497117, 4067034860337649
Offset: 0

Views

Author

Alois P. Heinz, Apr 29 2021

Keywords

Examples

			a(3) = 25 = 3+4+6+5+7: [1,1,1], [1,1,2], [1,1,4], [1,2,2], [1,2,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, [1, 0],
         `if`(t=0, 0, (p-> p+[0, p[2]])(b(n, iquo(t, 2)))+
                      (p-> p+[0, p[1]])(b(n-1, t+2))))
        end:
    a:= n-> b(n, 1)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, {1, 0}, If[t == 0, {0, 0},
         With[{p = b[n, Quotient[t, 2]]}, p + {0, p[[2]]}] +
         With[{p = b[n - 1, t + 2]}, p + {0, p[[1]]}]]];
    a[n_] := b[n, 1][[2]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

A343756 Number of nondecreasing sequences s1, s2, ..., s_n of powers of 2 such that s_i <= 1 + Sum_{j=1..i-1} s_j.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 45, 102, 232, 528, 1203, 2742, 6252, 14258, 32519, 74173, 169189, 385929, 880337, 2008141, 4580803, 10449377, 23836364, 54373853, 124033933, 282937887, 645419092, 1472287344, 3358484832, 7661154644, 17476122569, 39865383333, 90938296121
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2021

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 2: [1,1], [1,2].
a(3) = 4: [1,1,1], [1,1,2], [1,2,2], [1,2,4].
a(4) = 9 : [1,1,1,1], [1,1,1,2], [1,1,1,4], [1,1,2,2], [1,1,2,4], [1,2,2,2], [1,2,2,4], [1,2,4,4], [1,2,4,8].
a(5) = 20: [1,1,1,1,1], [1,1,1,1,2], [1,1,1,1,4], [1,1,1,2,2], [1,1,1,2,4], [1,1,1,4,4], [1,1,1,4,8], [1,1,2,2,2], [1,1,2,2,4], [1,1,2,4,4], [1,1,2,4,8], [1,2,2,2,2], [1,2,2,2,4], [1,2,2,2,8], [1,2,2,4,4], [1,2,2,4,8], [1,2,4,4,4], [1,2,4,4,8], [1,2,4,8,8], [1,2,4,8,16].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
         `if`(t=0, 0, b(n, iquo(t, 2))+b(n-1, t+1)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..38);
Showing 1-2 of 2 results.