A343801 Total sum of the parts in all partitions counted by A339479(n).
0, 1, 5, 25, 121, 583, 2789, 13287, 63149, 299697, 1421107, 6735253, 31911985, 151174893, 716081551, 3391722505, 16064368343, 76084921797, 360353446761, 1706695118265, 8083167563465, 38283027343193, 181313615940197, 858725280497117, 4067034860337649
Offset: 0
Keywords
Examples
a(3) = 25 = 3+4+6+5+7: [1,1,1], [1,1,2], [1,1,4], [1,2,2], [1,2,4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1481
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, [1, 0], `if`(t=0, 0, (p-> p+[0, p[2]])(b(n, iquo(t, 2)))+ (p-> p+[0, p[1]])(b(n-1, t+2)))) end: a:= n-> b(n, 1)[2]: seq(a(n), n=0..30);
-
Mathematica
b[n_, t_] := b[n, t] = If[n == 0, {1, 0}, If[t == 0, {0, 0}, With[{p = b[n, Quotient[t, 2]]}, p + {0, p[[2]]}] + With[{p = b[n - 1, t + 2]}, p + {0, p[[1]]}]]]; a[n_] := b[n, 1][[2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)