cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339507 Number of subsets of {1..n} whose sum is a decimal palindrome.

Original entry on oeis.org

1, 2, 4, 8, 15, 24, 32, 41, 55, 79, 126, 220, 406, 778, 1524, 3057, 6310, 13211, 27500, 56246, 113003, 224220, 442106, 870323, 1715503, 3391092, 6726084, 13382357, 26686192, 53286329, 106469764, 212803832, 425434124, 850676115, 1701169724, 3402169203, 6804150711, 13608072837, 27215890383, 54431527170
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2020

Keywords

Examples

			a(5) = 24 subsets: {}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5} and {1, 2, 3, 5}.
		

Crossrefs

Programs

  • Python
    from itertools import combinations
    def a(n):
        ans = 0
        for r in range(n+1):
            for s in combinations(range(1,n+1),r):
                strss = str(sum(s))
                ans += strss==strss[::-1]
        return ans
    print([a(n) for n in range(21)]) # Michael S. Branicky, Dec 07 2020
    
  • Python
    from functools import lru_cache
    from itertools import combinations
    @lru_cache(maxsize=None)
    def A339507(n):
        pallist = set(i for i in range(1,n*(n+1)//2+1) if str(i) == str(i)[::-1])
        return 1 if n == 0 else A339507(n-1) + sum(sum(d)+n in pallist for i in range(n) for d in combinations(range(1,n),i)) # Chai Wah Wu, Dec 08 2020
    
  • Python
    from functools import lru_cache
    def cond(s): ss = str(s); return ss == ss[::-1]
    @lru_cache(maxsize=None)
    def b(n, s):
        if n == 0: return int(cond(s))
        return b(n-1, s) + b(n-1, s+n)
    a = lambda n: b(n, 0)
    print([a(n) for n in range(100)]) # Michael S. Branicky, Oct 05 2022

Extensions

a(23)-a(36) from Michael S. Branicky, Dec 08 2020
a(37)-a(39) from Chai Wah Wu, Dec 11 2020