A339514 Number of subsets of {1..n} whose elements have the same number of divisors.
1, 2, 3, 5, 6, 10, 11, 19, 21, 23, 27, 43, 44, 76, 84, 100, 101, 165, 167, 295, 299, 331, 395, 651, 652, 656, 784, 1040, 1048, 1560, 1562, 2586, 2602, 3114, 4138, 6186, 6187, 8235, 12331, 20523, 20527, 24623, 24631, 32823, 32855, 32919, 49303, 65687, 65688
Offset: 0
Keywords
Examples
a(8) = 21 subsets: {}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {2, 3}, {2, 5}, {2, 7}, {3, 5}, {3, 7}, {5, 7}, {6, 8}, {2, 3, 5}, {2, 3, 7}, {2, 5, 7}, {3, 5, 7} and {2, 3, 5, 7}.
Links
- Sebastian Karlsson, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Divisor
Programs
-
Python
from sympy import divisors def test(n): if n<2: return n-1 return len(divisors(n)) def a(n): tests = [test(i) for i in range(n+1)] return sum(2**tests.count(v)-1 for v in set(tests)) print([a(n) for n in range(49)]) # Michael S. Branicky, Dec 07 2020
Formula
a(0) = 1, a(n) = a(n-1) + 2^A047983(n). - Sebastian Karlsson, Dec 26 2020
Extensions
a(25)-a(48) from Michael S. Branicky, Dec 07 2020