cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339519 Odd composite integers m such that A087130(2*m-J(m,29)) == 5*J(m,29) (mod m), where J(m,29) is the Jacobi symbol.

Original entry on oeis.org

9, 15, 27, 39, 45, 91, 117, 121, 135, 143, 195, 287, 351, 507, 585, 741, 1521, 1547, 1573, 1755, 1935, 2015, 2067, 2535, 2601, 3157, 3227, 3445, 3505, 3519, 3731, 4563, 4879, 4921, 6201, 6273, 6543, 6591, 6721, 7605, 7803, 8099, 10335, 10377, 10403, 10515
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1)*J(p,D) (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1)*J(m,D) (mod m) are called generalized Pell-Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=5, D=29 and k=2, while V(m) recovers A087130(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A087130, A071904, A339127 (a=5, b=-1, k=1).
Cf. A339517 (a=1, b=-1), A339518 (a=3, b=-1), A339520 (a=7, b=-1).

Programs

  • Mathematica
    Select[Range[3, 20000, 2],  CoprimeQ[#, 29] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 29], 5] - 5*JacobiSymbol[#, 29], #] &]