A339520 Odd composite integers m such that A086902(2*m-J(m,53)) == 7*J(m,53) (mod m), where J(m,53) is the Jacobi symbol.
25, 35, 51, 65, 75, 91, 105, 175, 203, 325, 391, 455, 575, 645, 861, 1247, 1275, 1295, 1633, 1763, 1775, 1785, 1875, 1921, 2275, 2407, 2415, 2599, 2625, 2651, 3045, 3367, 4199, 4579, 4623, 5629, 5835, 5887, 6441, 6699, 9959, 10465, 10815, 10825, 10877, 11865, 12025
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
- D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
- D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
Links
- Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).
Crossrefs
Programs
-
Mathematica
Select[Range[3, 20000, 2], CoprimeQ[#, 53] && CompositeQ[#] && Divisible[LucasL[2*# - JacobiSymbol[#, 53], 7] - 7*JacobiSymbol[#, 53], #] &]
Comments