A339522 Odd composite integers m such that A003501(2*m-J(m,21)) == 5 (mod m) and gcd(m,21)=1, where J(m,21) is the Jacobi symbol.
95, 115, 145, 253, 391, 527, 551, 713, 715, 779, 935, 1045, 1615, 1705, 1805, 1807, 1919, 2185, 2627, 2755, 2893, 2929, 2945, 3281, 4033, 4141, 4205, 5191, 5671, 5777, 5983, 6049, 6479, 7645, 7739, 8441, 8555, 8695, 9361, 11663, 11815, 12121, 12209, 12265, 14491
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
- D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
- D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).
Crossrefs
Programs
-
Maple
filter:= proc(m) uses LinearAlgebra:-Modular; local p,M; if igcd(m,21) <> 1 then return false fi; if isprime(m) then return false fi; p:= 2*m - numtheory:-jacobi(m,21); M:= Mod(m,[[0,1],[-1,5]],integer[8]); (MatrixPower(m,M,p) . <2,5>)[1] - 5 mod m = 0 end proc: select(filter, [seq(i,i=9..20000,2)]); # Robert Israel, Dec 15 2020
-
Mathematica
Select[Range[3, 20000, 2], CoprimeQ[#, 21] && CompositeQ[#] && Divisible[2*ChebyshevT[2*# - JacobiSymbol[#, 21], 5/2] - 5, #] &]
Comments