cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339523 Odd composite integers m such that A056854(2*m-J(m,45)) == 7 (mod m) and gcd(m,45)=1, where J(m,45) is the Jacobi symbol.

Original entry on oeis.org

91, 203, 323, 329, 377, 451, 1001, 1081, 1183, 1547, 1729, 1771, 1819, 1891, 1967, 2033, 2093, 2639, 2821, 3197, 3311, 3653, 3731, 3827, 4181, 4669, 5551, 5671, 5777, 5887, 6601, 6721, 7471, 7931, 7973, 8149, 8557, 9541, 9737, 10877, 11309, 11663, 11977, 13201
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 07 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.
The composite integers m with the property V(k*m-J(m,D)) == V(k-1) (mod m) are called generalized Pell-Lucas pseudoprimes of level k+ and parameter a.
Here b=1, a=7, D=45 and k=2, while V(m) recovers A056854(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A056854, A071904, A339131 (a=7, b=1, k=1).
Cf. A339521 (a=3, b=1), A339522 (a=5, b=1).

Programs

  • Maple
    filter:= proc(m)
    uses LinearAlgebra:-Modular;
    local p,M;
      if igcd(m,45) <> 1 then return false fi;
      if isprime(m) then return false fi;
      p:= 2*m - numtheory:-jacobi(m,45);
      M:= Mod(m,[[0,1],[-1,7]],integer[8]);
      (MatrixPower(m,M,p) . <2,7>)[1] - 7 mod m = 0
    end proc:
    select(filter, [seq(i,i=9..10000,2)]); # Robert Israel, Dec 15 2020
  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 45] && CompositeQ[#] && Divisible[LucasL[4*(2*# - JacobiSymbol[#, 45])] - 7, #] &]