A339532 Numbers b > 1 such that the smallest three primes, i.e., 2, 3 and 5 are base-b Wieferich primes.
449, 557, 593, 649, 701, 757, 793, 901, 1349, 1457, 1493, 1549, 1601, 1657, 1693, 1801, 2249, 2357, 2393, 2449, 2501, 2557, 2593, 2701, 3149, 3257, 3293, 3349, 3401, 3457, 3493, 3601, 4049, 4157, 4193, 4249, 4301, 4357, 4393, 4501, 4949, 5057, 5093, 5149, 5201
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
Select[Range[2, 5250], Function[b, AllTrue[{2, 3, 5}, PowerMod[b, (# - 1), #^2] == 1 &]]] (* Michael De Vlieger, Dec 10 2020 *)
-
PARI
is(n) = forprime(p=1, 5, if(Mod(n, p^2)^(p-1)!=1, return(0))); 1
Formula
Conjectures from Chai Wah Wu, Aug 18 2025: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9) for n > 9.
G.f.: x*(-x^8 + 108*x^7 + 36*x^6 + 56*x^5 + 52*x^4 + 56*x^3 + 36*x^2 + 108*x + 449)/(x^9 - x^8 - x + 1). (End)