A339569 Number of subsets of {1..n} whose cardinality is equal to the root-mean-square of the elements.
1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 10, 16, 32, 56, 90, 134, 186, 304, 476, 746, 1308, 2522, 4845, 9129, 17260, 32684, 59908, 106181, 191779, 337793, 596689, 1061991, 1907311, 3518903, 6426672, 12093858, 22777645, 42886411, 81002076, 151575988, 285280108, 529313088
Offset: 1
Keywords
Examples
a(12) = 10 subsets: {1}, {1, 2, 4, 5, 7, 11}, {1, 3, 5, 6, 8, 9}, {3, 4, 5, 6, 7, 9}, {1, 2, 3, 6, 7, 10, 12}, {2, 3, 4, 5, 8, 9, 12}, {2, 3, 6, 7, 8, 9, 10}, {3, 4, 5, 6, 7, 8, 12}, {1, 2, 5, 6, 9, 10, 11, 12} and {1, 4, 6, 7, 8, 9, 11, 12}.
Links
- Eric Weisstein's World of Mathematics, Root-Mean-Square
Programs
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def b(n, sos, c): if n == 0: if c>0: if sos==c*c*c: return 1 return 0 return b(n-1, sos, c) + b(n-1, sos+n*n, c+1) a = lambda n: b(n, 0, 0) print([a(n) for n in range(1, 44)]) # Michael S. Branicky, Dec 10 2020
Extensions
a(24)-a(43) from Michael S. Branicky, Dec 09 2020