cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339579 a(n) = least nonnegative integer k such that n*2^k - 1 is composite.

Original entry on oeis.org

4, 3, 5, 2, 0, 4, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Dec 24 2020

Keywords

Comments

Conjectured to grow without limit.
A063377 is an essentially identical sequence, although with a slightly different definition, different initial terms, and different offset.

References

  • Carl Pomerance, Problem 81:21 (= 321), in R. K. Guy problem list.

Crossrefs

See A339580 for records.

Programs

  • PARI
    A339579(n) = for(k=0,oo,my(t=(n*(2^k))-1); if((t>1)&&!isprime(t), return(k))); \\ Antti Karttunen, Dec 24 2020

Formula

For n >= 3, a(n) = A063377(n-1).