A339579 a(n) = least nonnegative integer k such that n*2^k - 1 is composite.
4, 3, 5, 2, 0, 4, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0
Offset: 1
Keywords
References
- Carl Pomerance, Problem 81:21 (= 321), in R. K. Guy problem list.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- R. K. Guy, editor, Western Number Theory Problems, 1985-12-21 & 23, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission.
Programs
-
PARI
A339579(n) = for(k=0,oo,my(t=(n*(2^k))-1); if((t>1)&&!isprime(t), return(k))); \\ Antti Karttunen, Dec 24 2020
Formula
For n >= 3, a(n) = A063377(n-1).
Comments