A339597 When 2*n+1 first appears in A086799.
1, 2, 5, 4, 9, 10, 13, 8, 17, 18, 21, 20, 25, 26, 29, 16, 33, 34, 37, 36, 41, 42, 45, 40, 49, 50, 53, 52, 57, 58, 61, 32, 65, 66, 69, 68, 73, 74, 77, 72, 81, 82, 85, 84, 89, 90, 93, 80, 97, 98, 101, 100, 105, 106, 109, 104, 113, 114, 117, 116, 121, 122, 125, 64, 129, 130, 133, 132, 137
Offset: 0
Links
- Michel Marcus, Table of n, a(n) for n = 0..10000
- Christian Krause, LODA program
Programs
-
Maple
N := 127: # for a(0) to a(N) V := Array(0..N): count := 0: for i from 1 while count < N+1 do with(MmaTranslator[Mma]): f(i) := BitOr(i,i-1); v := (f(i)-1)/2; if v <= N and V[v] = 0 then count := count+1; V[v] := i fi od: convert(V,list); # Robert Israel, Jan 07 2021
-
PARI
f(n) = bitor(n, n-1); \\ A086799 a(n) = my(k=1); while (f(k) != 2*n+1, k++); k; \\ Michel Marcus, Jan 07 2021
-
PARI
a(n) = n++; n<<1 - 1<
Kevin Ryde, Mar 29 2021 -
Python
def A339597(n): return ((m:=n+1)<<1)-(m&-m) # Chai Wah Wu, Sep 01 2023
Formula
a(n) = 2*(n+1) - A006519(n+1) = n+1 with a 0 bit inserted above its least significant 1-bit. - Kevin Ryde, Mar 29 2021
a(n) = A129760(n+1) + n+1. - Christian Krause, May 05 2021