A339617 Number of non-graphical integer partitions of 2n.
0, 1, 3, 6, 13, 25, 46, 81, 141, 234, 383, 615, 968, 1503, 2298, 3468, 5176, 7653, 11178, 16212, 23290, 33218, 46996, 66091, 92277, 128122, 176787, 242674, 331338, 450279, 608832, 819748, 1098907, 1467122, 1951020, 2584796, 3411998
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 13 partitions: (2) (4) (6) (8) (2,2) (3,3) (4,4) (3,1) (4,2) (5,3) (5,1) (6,2) (3,2,1) (7,1) (4,1,1) (3,3,2) (4,2,2) (4,3,1) (5,2,1) (6,1,1) (3,3,1,1) (4,2,1,1) (5,1,1,1) For example, the partition (2,2,2,2) is not counted under a(4) because there are three possible graphs with the prescribed degrees: {{1,2},{1,3},{2,4},{3,4}} {{1,2},{1,4},{2,3},{3,4}} {{1,3},{1,4},{2,3},{2,4}}
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]=={}&]],{n,0,5}]
Comments