A339618 Heinz numbers of non-graphical integer partitions of even numbers.
3, 7, 9, 10, 13, 19, 21, 22, 25, 28, 29, 30, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 63, 66, 70, 71, 75, 76, 79, 82, 84, 85, 87, 88, 89, 91, 94, 100, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 147
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 3: {2} 43: {14} 79: {22} 7: {4} 46: {1,9} 82: {1,13} 9: {2,2} 49: {4,4} 84: {1,1,2,4} 10: {1,3} 52: {1,1,6} 85: {3,7} 13: {6} 53: {16} 87: {2,10} 19: {8} 55: {3,5} 88: {1,1,1,5} 21: {2,4} 57: {2,8} 89: {24} 22: {1,5} 61: {18} 91: {4,6} 25: {3,3} 62: {1,11} 94: {1,15} 28: {1,1,4} 63: {2,2,4} 100: {1,1,3,3} 29: {10} 66: {1,2,5} 101: {26} 30: {1,2,3} 70: {1,3,4} 102: {1,2,7} 34: {1,7} 71: {20} 107: {28} 37: {12} 75: {2,3,3} 111: {2,12} 39: {2,6} 76: {1,1,8} 113: {30} For example, there are three possible multigraphs with degrees (1,1,3,3): {{1,2},{1,2},{1,2},{3,4}} {{1,2},{1,2},{1,3},{2,4}} {{1,2},{1,2},{1,4},{2,3}}. Since none of these is a graph, the Heinz number 100 belongs to the sequence.
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A300061 is a superset.
A339617 counts these partitions.
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[100],EvenQ[Length[nrmptn[#]]]&&strs[Times@@Prime/@nrmptn[#]]=={}&]
Comments