A339619 Number of integer partitions of n with no 1's and a part divisible by all the other parts.
1, 0, 1, 1, 2, 1, 4, 1, 5, 3, 7, 2, 13, 2, 13, 9, 17, 6, 27, 7, 33, 19, 35, 16, 58, 22, 58, 39, 75, 37, 108, 44, 117, 75, 132, 88, 190, 94, 199, 147, 250, 153, 322, 180, 363, 271, 405, 286, 544, 339, 601, 458, 699, 503, 868, 608, 990, 777, 1113, 865, 1422, 993
Offset: 0
Keywords
Examples
The a(6) = 4 through a(16) = 17 partitions (A..G = 10..16): 6 7 8 9 A B C D E F G 33 44 63 55 632 66 6322 77 A5 88 42 62 333 82 84 C2 C3 C4 222 422 442 93 662 555 E2 2222 622 A2 842 663 844 4222 444 A22 933 C22 22222 633 4442 6333 4444 822 6332 33333 6622 3333 8222 63222 8422 4422 44222 A222 6222 62222 44422 42222 422222 63322 222222 2222222 82222 442222 622222 4222222 22222222
Crossrefs
The dual version is A083711.
The version with 1's allowed is A130689.
The strict case is A339660.
The Heinz numbers of these partitions are the odd complement of A343337.
The strict case with 1's allowed is A343347.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Programs
-
Mathematica
Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Or@@And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}]
Comments