A339626 a(n) = A322437(A002110(n)).
0, 0, 0, 0, 3, 30, 315, 4830, 96453, 2296350
Offset: 0
Examples
The a(4) = 3 such (unordered) pairs of set partitions of {1,2,3,4} are: {{1,2},{3,4}}|{{1,3},{2,4}} {{1,2},{3,4}}|{{1,4},{2,3}} {{1,3},{2,4}}|{{1,4},{2,3}}.
Programs
-
Mathematica
Block[{f}, f[n_] := If[n <= 1, {{}}, Join @@ Table[Map[Prepend[#, d] &, Select[f[n/d], Min @@ # >= d &]], {d, Rest[Divisors[n]]}]]; Map[Length[Select[Subsets[f[#], {2}], And[! Or @@ Divisible @@@ #, ! Or @@ Divisible @@@ Reverse /@ #] &@ Tuples[#] &]] &, FoldList[Times, 1, Prime@ Range@ 7]] ] (* Michael De Vlieger, Dec 10 2020, after Gus Wiseman at A322437 *)
Formula
For n > 0, a(n) = A322441(n)/2.
Comments