cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339634 Number of final Tic-Tac-Toe positions on a (2*n+1) X 3 board that result in a tie.

Original entry on oeis.org

3, 16, 30, 72, 178, 444, 1114, 2808, 7098, 17984, 45656, 116106, 295718, 754226, 1926060, 4924188, 12602416, 32284214, 82777240, 212415744, 545495716, 1401849594, 3604921774, 9275890122, 23881602058, 61518226734, 158548607640, 408814563524, 1054590179342
Offset: 0

Views

Author

Doron Zeilberger, Taerim Kim, Karnaa Mistry, Weiji Zheng, Dec 10 2020

Keywords

Comments

The number of (2*n+1) X 3 0,1-matrices with 3*n+2 1's and 3*n+1 0's and no consecutive horizontal, vertical, nor diagonal triples of 111 or 000.

Examples

			For n = 0 it is a 3 X 1 matrix, and there are 3 arrangements of 2 1's and a single 0 such that there are no 3-streaks of 1's nor 0's in the matrix.
For n = 1 it is the classic 3 X 3 Tic-Tac-Toe board, having 1's as X's and 0's as O's.
		

Crossrefs

Bisection of A339631 (odd part).
Cf. A339633 (even part).

Programs

  • Maple
    # Maple program adapted from OddTTT3(N) in Project 5 of Doron Zeilberger's Combinatorics Class Fall 2020 (Rutgers University).
    A339634List:=proc(n) local f,i,t,x,N:
    f:=(4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2) / (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1):
    N:=n-1:
    #Take the Taylor expansion up to x^(2*N+2)
    f:=taylor(f,x=0,2*N+3):
    #Extract the coefficients of x^(2*i+1)*t^(3*i+2)
    [3,seq(coeff(coeff(f,x,2*i+1),t,3*i+2),i=1..N)]:
    end:

Formula

a(n) = [x^(2*n+1)*t^ceiling(3*(2*n+1)/2)] (4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2) / (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1) for n >= 1.