A339648 Number of series reduced trees with n nodes and integer labeled leaves covering an initial interval of positive integers.
1, 0, 2, 4, 16, 62, 290, 1496, 8548, 53278, 359076, 2597052, 20034252, 163996372, 1418326160, 12911494594, 123317867572, 1232219079760, 12848961783474, 139505358593240, 1573914932077692, 18418287165450500, 223191801317514104, 2796501582165674166, 36179439053130339742
Offset: 1
Keywords
Examples
a(4) = 4: (111), (112), (122), (123). a(5) = 16: (1111), (1112), (1122), (1123), (1222), (1223), (1233), (1234), (1(11)), (1(12)), (1(22)), (1(23)), (2(11)), (2(12)), (2(13)), (3(12)).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
PARI
\\ here R(n,k) gives number of colorings with k colors as vector. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, #v, v[n] = EulerT(concat(v[1..n-2], [0]))[n-1]); v} seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}
Comments