cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339650 Triangle read by rows: T(n,k) is the number of trees with n leaves of exactly k colors and all non-leaf nodes having degree 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 6, 3, 0, 1, 10, 30, 36, 15, 0, 2, 27, 140, 310, 300, 105, 0, 2, 74, 663, 2376, 3990, 3150, 945, 0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395, 0, 6, 710, 15642, 123508, 462735, 925890, 1018710, 582120, 135135
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2020

Keywords

Comments

See table 4.2 in the Johnson reference.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   2,    1;
  0, 1,   4,    6,     3;
  0, 1,  10,   30,    36,    15;
  0, 2,  27,  140,   310,   300,   105;
  0, 2,  74,  663,  2376,  3990,  3150,   945;
  0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395;
  ...
		

Crossrefs

Columns k=1..4 are A129860, A220829, A220830, A220831.
Main diagonal is A001147(n-2) for n >= 2.
Row sums are A339651.
Cf. A319541 (rooted), A339649, A339780.

Programs

  • PARI
    \\ here U(n,k) is column k of A339649 as a vector.
    R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    U(n, k)={my(g=x*Ser(R(n, k))); Vec(1 + g + (subst(g + O(x*x^(n\3)), x, x^3) - g^3)/3)}
    M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A339649(n,i).