A339652 a(n) is the least number k such that 2*k+1 has exactly n expressions as p+2*q where p and q are primes, or 0 if there is no such k.
1, 3, 4, 10, 8, 16, 22, 25, 37, 49, 55, 46, 52, 67, 76, 100, 82, 124, 115, 118, 160, 112, 136, 181, 205, 196, 142, 157, 235, 241, 217, 202, 232, 277, 340, 247, 391, 337, 436, 424, 481, 864, 292, 262, 448, 397, 520, 457, 367, 427, 595, 412, 382, 547, 487, 502, 517, 562, 655, 703, 598, 760, 592
Offset: 0
Keywords
Examples
a(4) = 8 because 2*8+1 = 17 has exactly 4 representations as p+2*q: 17 = 3 + 2*7 = 7 + 2*5 = 11 + 2*3 = 13 + 2*2, and this is not true for any k < 8.
Links
- Robert Israel, Table of n, a(n) for n = 0..9400
Programs
-
Maple
# given table A046927 R:= Array(0..100): for i from 0 to max(indices(A046927)) do v:= A046927[i]; if R[v]= 0 then R[v]:= i fi od: seq(R[i],i=0..100);
-
PARI
f(n) = my(s); n=2*n+1; forprime(p=2, n\2, s+=isprime(n-2*p)); s; a(n) = my(k=1); while(f(k) != n, k++); k; \\ Michel Marcus, Dec 14 2020
Formula
A046927(a(n)) = n if a(n) > 0.
Comments