A339655 Number of non-loop-graphical integer partitions of 2n.
0, 0, 1, 3, 7, 14, 28, 51, 91, 156, 260, 425, 680, 1068, 1654, 2524, 3802, 5668, 8350, 12190, 17634, 25306, 36011, 50902, 71441, 99642
Offset: 0
Examples
The a(2) = 1 through a(5) = 14 partitions (A = 10): (4) (6) (8) (A) (4,2) (4,4) (5,5) (5,1) (5,3) (6,4) (6,2) (7,3) (7,1) (8,2) (5,2,1) (9,1) (6,1,1) (5,3,2) (5,4,1) (6,2,2) (6,3,1) (7,2,1) (8,1,1) (6,2,1,1) (7,1,1,1) For example, the seven normal loop-multigraphs with degrees y = (5,3,2) are: {{1,1},{1,1},{1,2},{2,2},{3,3}} {{1,1},{1,1},{1,2},{2,3},{2,3}} {{1,1},{1,1},{1,3},{2,2},{2,3}} {{1,1},{1,2},{1,2},{1,2},{3,3}} {{1,1},{1,2},{1,2},{1,3},{2,3}} {{1,1},{1,2},{1,3},{1,3},{2,2}} {{1,2},{1,2},{1,2},{1,3},{1,3}}, but since none of these is a loop-graph (because they are not strict), y is counted under a(5).
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A062740 counts labeled connected loop-graphs.
A101048 counts partitions into semiprimes.
A320461 ranks normal loop-graphs.
A322661 counts covering loop-graphs.
A320655 counts factorizations into semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]=={}&]],{n,0,5}]
Extensions
a(7)-a(25) from Andrew Howroyd, Jan 10 2024
Comments