A339656 Number of loop-graphical integer partitions of 2n.
1, 2, 4, 8, 15, 28, 49, 84, 140, 229, 367, 577, 895, 1368, 2064, 3080, 4547, 6642, 9627, 13825, 19704, 27868, 39164, 54656, 75832, 104584
Offset: 0
Examples
The a(0) = 1 through a(4) = 15 partitions: () (2) (2,2) (3,3) (3,3,2) (1,1) (3,1) (2,2,2) (4,2,2) (2,1,1) (3,2,1) (4,3,1) (1,1,1,1) (4,1,1) (2,2,2,2) (2,2,1,1) (3,2,2,1) (3,1,1,1) (3,3,1,1) (2,1,1,1,1) (4,2,1,1) (1,1,1,1,1,1) (5,1,1,1) (2,2,2,1,1) (3,2,1,1,1) (4,1,1,1,1) (2,2,1,1,1,1) (3,1,1,1,1,1) (2,1,1,1,1,1,1) (1,1,1,1,1,1,1,1) For example, there are four possible loop-graphs with degrees y = (2,2,1,1), namely {{1,1},{2,2},{3,4}} {{1,1},{2,3},{2,4}} {{1,2},{1,3},{2,4}} {{1,2},{1,4},{2,3}} {{1,3},{1,4},{2,2}}, so y is counted under a(3). On the other hand, there are two possible loop-multigraphs with degrees z = (4,2), namely {{1,1},{1,1},{2,2}} {{1,1},{1,2},{1,2}}, but neither of these is a loop-graph, so z is not counted under a(3).
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A339658 ranks these partitions.
A062740 counts labeled connected loop-graphs.
A320461 ranks normal loop-graphs.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A322661 counts covering loop-graphs.
The following count vertex-degree partitions and give their Heinz numbers:
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@spsbin[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]!={}&]],{n,0,5}]
Extensions
a(8)-a(25) from Andrew Howroyd, Jan 10 2024
Comments