A339658 Heinz numbers of loop-graphical partitions (of even numbers).
1, 3, 4, 9, 10, 12, 16, 25, 27, 28, 30, 36, 40, 48, 63, 64, 70, 75, 81, 84, 88, 90, 100, 108, 112, 120, 144, 147, 160, 175, 189, 192, 196, 198, 208, 210, 220, 225, 243, 250, 252, 256, 264, 270, 280, 300, 324, 336, 343, 352, 360, 400, 432, 441, 448, 462, 468, 480
Offset: 1
Keywords
Examples
The sequence of terms > 1 together with their prime indices begins: 3: {2} 70: {1,3,4} 192: {1,1,1,1,1,1,2} 4: {1,1} 75: {2,3,3} 196: {1,1,4,4} 9: {2,2} 81: {2,2,2,2} 198: {1,2,2,5} 10: {1,3} 84: {1,1,2,4} 208: {1,1,1,1,6} 12: {1,1,2} 88: {1,1,1,5} 210: {1,2,3,4} 16: {1,1,1,1} 90: {1,2,2,3} 220: {1,1,3,5} 25: {3,3} 100: {1,1,3,3} 225: {2,2,3,3} 27: {2,2,2} 108: {1,1,2,2,2} 243: {2,2,2,2,2} 28: {1,1,4} 112: {1,1,1,1,4} 250: {1,3,3,3} 30: {1,2,3} 120: {1,1,1,2,3} 252: {1,1,2,2,4} 36: {1,1,2,2} 144: {1,1,1,1,2,2} 256: {1,1,1,1,1,1,1,1} 40: {1,1,1,3} 147: {2,4,4} 264: {1,1,1,2,5} 48: {1,1,1,1,2} 160: {1,1,1,1,1,3} 270: {1,2,2,2,3} 63: {2,2,4} 175: {3,3,4} 280: {1,1,1,3,4} 64: {1,1,1,1,1,1} 189: {2,2,2,4} 300: {1,1,2,3,3} For example, the four loop-graphs with degrees y = (3,1,1,1) are: {{1,1},{1,2},{3,4}} {{1,1},{1,3},{2,4}} {{1,1},{1,4},{2,3}} {{1,2},{1,3},{1,4}}, so the Heinz number 40 is in the sequence. On the other hand, the three loop-multigraphs with degrees y = (4,4) are {{1,1},{1,1},{2,2},{2,2}} {{1,1},{1,2},{1,2},{2,2}} {{1,2},{1,2},{1,2},{1,2}}, but none of these is a loop-graph, so the Heinz number 49 is not in the sequence.
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
Programs
-
Mathematica
spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[25],Select[mpsbin[nrmptn[#]],UnsameQ@@#&]!={}&]
Comments