cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339692 Primes that can be expressed as p^k+2*k where p is prime and k >= 1.

Original entry on oeis.org

5, 7, 13, 19, 29, 31, 43, 53, 61, 73, 89, 103, 109, 131, 139, 151, 173, 181, 193, 199, 229, 241, 271, 283, 293, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1373, 1429, 1453, 1483, 1489, 1609
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 13 2020

Keywords

Comments

Terms expressible in more than one way include
13 = 11^1 + 2*1 = 3^2 + 2*2
349 = 347^1 + 2*1 = 7^3 + 2*3
78139 = 78137^^1 + 2*1 = 5^7 + 2*7
1092733 = 1092731^1 + 2*1 = 103^3 + 2*3
22665193 = 22665191^1 + 2*1 = 283^3 + 2*3.

Examples

			a(5) = 29 is a term because 29 = 5^2 + 2*2. and 5 and 29 are primes.
		

Crossrefs

Includes A006512, A045637 and A201308.

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= {}:
    for n from 1 while 3^n + 2*n <= N do
      p:= 2:
      do
        p:= nextprime(p);
        q:=  p^n + 2*n;
        if q > N then break fi;
        if isprime(q) then S:= S union {q};
        fi
    od od:
    sort(convert(S,list));
  • Mathematica
    Block[{nn = 1610, a = {}}, Do[Do[Which[# > nn, Break[], PrimeQ[#], AppendTo[a, #]] &[(#^k) + 2 k], {k, Infinity}] &[Prime@ i], {i, 2, PrimePi@ nn}]; Union@ a] (* Michael De Vlieger, Dec 13 2020 *)
  • PARI
    isok(p) = {if (isprime(p), for(k=1, p\2, if (k==isprimepower(p-2*k), return(1));););} \\ Michel Marcus, Dec 13 2020