cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339719 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^4.

Original entry on oeis.org

1, -4, -4, 6, -4, 12, -4, -8, 6, 12, -4, -12, -4, 12, 12, 17, -4, -12, -4, -12, 12, 12, -4, 20, 6, 12, -8, -12, -4, -20, -4, -28, 12, 12, 12, 10, -4, 12, 12, 20, -4, -20, -4, -12, -12, 12, -4, -48, 6, -12, 12, -12, -4, 20, 12, 20, 12, 12, -4, 4, -4, 12, -12, 38, 12, -20, -4, -12, 12, -20
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339336(n/d) * a(d).
a(p^k) = A022599(k) for prime p.