A339724 Odd composite integers m such that A000032(3*m-J(m,5)) == 3*J(m,5) (mod m), where J(m,5) is the Jacobi symbol.
9, 21, 161, 341, 901, 1281, 1853, 3201, 4181, 5473, 5611, 5777, 6119, 6721, 9729, 10877, 11041, 12209, 12441, 13201, 14981, 15251, 16771, 17941, 20591, 20769, 20801, 23323, 25761, 27403, 27661, 28121, 28421, 29489, 33001, 34561, 38801, 39281, 41159, 42721
Offset: 1
Keywords
References
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
- D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
- D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).
Links
- Dorin Andrica, Vlad Crişan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).
Crossrefs
Programs
-
Mathematica
Select[Range[3, 43000, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[LucasL[3*# - JacobiSymbol[#, 5]] - 3*JacobiSymbol[#, 5], #] &]
Comments