A339737 Triangle read by rows where T(n,k) is the number of integer partitions of n with greatest gap k.
1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 1, 2, 2, 1, 1, 0, 5, 1, 3, 2, 2, 1, 1, 0, 6, 2, 3, 4, 3, 2, 1, 1, 0, 8, 2, 4, 5, 4, 3, 2, 1, 1, 0, 10, 2, 5, 7, 6, 5, 3, 2, 1, 1, 0, 12, 3, 6, 8, 9, 6, 5, 3, 2, 1, 1, 0, 15, 3, 8, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0
Offset: 0
Examples
Triangle begins: 1 1 0 1 1 0 2 0 1 0 2 1 1 1 0 3 1 1 1 1 0 4 1 2 2 1 1 0 5 1 3 2 2 1 1 0 6 2 3 4 3 2 1 1 0 8 2 4 5 4 3 2 1 1 0 10 2 5 7 6 5 3 2 1 1 0 12 3 6 8 9 6 5 3 2 1 1 0 15 3 8 11 11 10 7 5 3 2 1 1 0 18 4 9 13 15 13 10 7 5 3 2 1 1 0 22 5 10 17 19 18 14 11 7 5 3 2 1 1 0 27 5 13 20 24 23 20 14 11 7 5 3 2 1 1 0 For example, row n = 9 counts the following partitions: (3321) (432) (333) (54) (522) (63) (72) (81) (9) (22221) (3222) (4311) (441) (531) (621) (711) (32211) (33111) (4221) (5211) (6111) (222111) (3111111) (42111) (51111) (321111) (411111) (2211111) (21111111) (111111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- George E. Andrews and David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
- Brian Hopkins, James A. Sellers, and Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020.
- Wikipedia, Mex (mathematics)
Crossrefs
Column k = 0 is A000009.
Row sums are A000041.
Central diagonal is A000041.
Column k = 1 is A087897.
An encoding (of greatest gap) using Heinz numbers is A339662.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A048004 counts compositions by greatest part.
A064391 is the version for crank.
A064428 counts partitions of nonnegative crank.
A073491 list numbers with gap-free prime indices.
A107428 counts gap-free compositions.
Programs
-
Mathematica
maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q]; Table[Length[Select[IntegerPartitions[n],maxgap[#]==k&]],{n,0,15},{k,0,n}]
-
PARI
S(n,k)={if(k>n, O(x*x^n), x^k*(S(n-k,k+1) + 1)/(1 - x^k))} ColGf(k,n) = {(k==0) + S(n,k+1)/prod(j=1, k-1, 1 - x^j + O(x^max(1,n-k)))} A(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))} { my(M=A(10)); for(i=1, #M, print(M[i,1..i])) } \\ Andrew Howroyd, Jan 13 2024
Extensions
Offset corrected by Andrew Howroyd, Jan 13 2024
Comments