cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339737 Triangle read by rows where T(n,k) is the number of integer partitions of n with greatest gap k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 1, 2, 2, 1, 1, 0, 5, 1, 3, 2, 2, 1, 1, 0, 6, 2, 3, 4, 3, 2, 1, 1, 0, 8, 2, 4, 5, 4, 3, 2, 1, 1, 0, 10, 2, 5, 7, 6, 5, 3, 2, 1, 1, 0, 12, 3, 6, 8, 9, 6, 5, 3, 2, 1, 1, 0, 15, 3, 8, 11, 11, 10, 7, 5, 3, 2, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.

Examples

			Triangle begins:
   1
   1   0
   1   1   0
   2   0   1   0
   2   1   1   1   0
   3   1   1   1   1   0
   4   1   2   2   1   1   0
   5   1   3   2   2   1   1   0
   6   2   3   4   3   2   1   1   0
   8   2   4   5   4   3   2   1   1   0
  10   2   5   7   6   5   3   2   1   1   0
  12   3   6   8   9   6   5   3   2   1   1   0
  15   3   8  11  11  10   7   5   3   2   1   1   0
  18   4   9  13  15  13  10   7   5   3   2   1   1   0
  22   5  10  17  19  18  14  11   7   5   3   2   1   1   0
  27   5  13  20  24  23  20  14  11   7   5   3   2   1   1   0
For example, row n = 9 counts the following partitions:
  (3321)       (432)   (333)      (54)      (522)    (63)    (72)   (81)  (9)
  (22221)      (3222)  (4311)     (441)     (531)    (621)   (711)
  (32211)              (33111)    (4221)    (5211)   (6111)
  (222111)             (3111111)  (42111)   (51111)
  (321111)                        (411111)
  (2211111)
  (21111111)
  (111111111)
		

Crossrefs

Column k = 0 is A000009.
Row sums are A000041.
Central diagonal is A000041.
Column k = 1 is A087897.
The version for least gap is A264401, with Heinz number encoding A257993.
The version for greatest difference is A286469 or A286470.
An encoding (of greatest gap) using Heinz numbers is A339662.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A048004 counts compositions by greatest part.
A056239 adds up prime indices, row sums of A112798.
A064391 is the version for crank.
A064428 counts partitions of nonnegative crank.
A073491 list numbers with gap-free prime indices.
A107428 counts gap-free compositions.
A238709/A238710 counts partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[Length[Select[IntegerPartitions[n],maxgap[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    S(n,k)={if(k>n, O(x*x^n), x^k*(S(n-k,k+1) + 1)/(1 - x^k))}
    ColGf(k,n) = {(k==0) + S(n,k+1)/prod(j=1, k-1, 1 - x^j + O(x^max(1,n-k)))}
    A(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
    { my(M=A(10)); for(i=1, #M, print(M[i,1..i])) } \\ Andrew Howroyd, Jan 13 2024

Extensions

Offset corrected by Andrew Howroyd, Jan 13 2024