cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339745 Decimal expansion of Product_{n>=2} (1 - n^(-10)).

Original entry on oeis.org

9, 9, 9, 0, 0, 5, 4, 4, 2, 4, 8, 0, 9, 8, 9, 4, 7, 5, 2, 7, 3, 7, 8, 4, 5, 3, 5, 8, 5, 4, 2, 2, 7, 2, 4, 5, 8, 6, 0, 5, 9, 0, 9, 7, 3, 8, 5, 3, 6, 4, 7, 3, 6, 9, 0, 8, 2, 2, 8, 9, 6, 2, 3, 9, 9, 2, 8, 9, 5, 9, 9, 4, 1, 9, 5, 9, 8, 9, 8, 1, 0, 0, 7, 4, 1, 1, 8, 6, 0, 3, 5, 0, 2, 7, 7, 3, 1, 7, 1, 3, 0, 5, 0, 9, 0, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 15 2020

Keywords

Examples

			0.99900544248098947527378453585422724586059097385364736908229...
		

Crossrefs

Programs

  • Maple
    evalf((cosh(sqrt((5 - sqrt(5))/2)*Pi) + sin(sqrt(5)*Pi/2)) * (cosh(sqrt((5 + sqrt(5))/2)*Pi) - sin(sqrt(5)*Pi/2)) / (40*Pi^4), 100);
  • Mathematica
    RealDigits[(Cosh[Sqrt[(5 - Sqrt[5])/2]*Pi] + Sin[Sqrt[5]*Pi/2]) * (Cosh[Sqrt[(5 + Sqrt[5])/2]*Pi] - Sin[Sqrt[5]*Pi/2]) / (40*Pi^4), 10, 100][[1]]
  • PARI
    exp(suminf(j=1, (1 - zeta(10*j))/j))
    
  • PARI
    prodinf(n=2, 1-1/n^10) \\ Michel Marcus, Dec 15 2020

Formula

Equals (cosh(sqrt((5 - sqrt(5))/2)*Pi) + sin(sqrt(5)*Pi/2)) * (cosh(sqrt((5 + sqrt(5))/2)*Pi) - sin(sqrt(5)*Pi/2)) / (40*Pi^4).
Equals exp(Sum_{j>=1} (1 - zeta(10*j))/j).