cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339746 Positive integers of the form 2^i*3^j*k, gcd(k,6)=1, and i == j (mod 3).

Original entry on oeis.org

1, 5, 6, 7, 8, 11, 13, 17, 19, 23, 25, 27, 29, 30, 31, 35, 36, 37, 40, 41, 42, 43, 47, 48, 49, 53, 55, 56, 59, 61, 64, 65, 66, 67, 71, 73, 77, 78, 79, 83, 85, 88, 89, 91, 95, 97, 101, 102, 103, 104, 107, 109, 113, 114, 115, 119, 121, 125, 127, 131, 133, 135
Offset: 1

Views

Author

Griffin N. Macris, Dec 15 2020

Keywords

Comments

From Peter Munn, Mar 16 2021: (Start)
The positive integers in the multiplicative subgroup of the positive rationals generated by 8, 6, and A215848 (primes greater than 3).
This subgroup, denoted H, has two cosets: 2H = (1/3)H and 3H = (1/2)H. It follows that the sequence is one part of a 3-part partition of the positive integers with the property that each part's terms are half the even terms of one of the other parts and also one third of the multiples of 3 in the remaining part.
(End)
Positions of multiples of 3 in A276085 (and in A276075). Because A276085 is completely additive, this is closed under multiplication: if m and n are in the sequence then so is m*n. - Antti Karttunen, May 27 2024
The coset sequences mentioned in Peter Munn's comment above are A373261 and A373262. - Antti Karttunen, Jun 04 2024

Crossrefs

Sequences of positive integers in a multiplicative subgroup of positive rationals generated by a set S and A215848: S={}: A007310, S={6}: A064615, S={3,4}: A003159, S={2,9}: A007417, S={4,6}: A036668, S={3,8}: A191257, S={4,9}: A339690, S={6,8}: this sequence.
Positions of 0's in A373153, positions of multiples of 3 in A276085 and in A372576.
Cf. A372573 (characteristic function), A373261, A373262.
Sequences giving positions of multiples of k in A276085, for k=2, 3, 4, 5, 8, 27, 3125: A003159, this sequence, A369002, A373140, A373138, A377872, A377878.
Cf. also A332820, A373992, A383288.

Programs

  • Maple
    N:= 1000: # for terms <= N
    R:= {}:
    for k1 from 0 to floor(N/6) do
      for k0 in [1,5] do
        k:= k0 + 6*k1;
        for j from 0 while 3^j*k <= N do
          for i from (j mod 3) by 3 do
            x:= 2^i * 3^j * k;
            if x > N then break fi;
            R:= R union {x}
    od od od od:
    sort(convert(R,list)); # Robert Israel, Apr 08 2021
  • Mathematica
    Select[Range[130], Mod[IntegerExponent[#, 2] - IntegerExponent[#, 3], 3] == 0 &]
  • PARI
    isA339746 = A372573; \\ Antti Karttunen, Jun 04 2024
    
  • Python
    from sympy import factorint
    def ok(n):
      f = factorint(n, limit=4)
      i, j = 0 if 2 not in f else f[2], 0 if 3 not in f else f[3]
      return (i-j)%3 == 0
    def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
    print(aupto(200)) # Michael S. Branicky, Mar 26 2021
    
  • Python
    from itertools import count
    def A339746(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(x.bit_length()+1):
                i2 = 1<x:
                        break
                    m = x//k
                    c -= (m-1)//6+(m-5)//6+2
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 12 2025

Formula

a(n) ~ (91/43)*n.