cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339754 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k symmetric vertices (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 6, 6, 0, 4, 12, 16, 10, 0, 8, 24, 40, 40, 20, 0, 20, 60, 104, 120, 90, 35, 0, 50, 150, 270, 350, 330, 210, 70, 0, 140, 420, 768, 1040, 1080, 840, 448, 126, 0, 392, 1176, 2184, 3080, 3468, 3108, 2128, 1008, 252
Offset: 1

Views

Author

Sergi Elizalde, Feb 12 2021

Keywords

Comments

A symmetric vertex is a vertex in the first half of the path (not including the midpoint) that is a mirror image of a vertex in the second half, with respect to reflection along the vertical line through the midpoint of the path.

Examples

			For n=5 there are 4 Dyck paths with 2 symmetric vertices: uuuuddddud, uduuuudddd, uuudddudud, ududuuuddd.
Triangle begins:
  1;
  0,   2;
  0,   2,    3;
  0,   2,    6,    6;
  0,   4,   12,   16,   10;
  0,   8,   24,   40,   40,   20;
  0,  20,   60,  104,  120,   90,   35;
  0,  50,  150,  270,  350,  330,  210,   70;
  0, 140,  420,  768, 1040, 1080,  840,  448,  126;
  0, 392, 1176, 2184, 3080, 3468, 3108, 2128, 1008, 252;
  ...
		

Crossrefs

Row sums give A000108.
Main diagonal gives A001405.
Column k=2 gives 2*A005817(n-3) (for n>2).

Programs

  • Maple
    b:= proc(x, y, v) option remember; expand(
          `if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(
          `if`(y+i=v+j, z, 1)*b(x-1, y+i, v+j), i=l), j=l))([-1, 1]))))
        end:
    g:= proc(n) option remember; add(b(n, j$2), j=0..n) end:
    T:= (n, k)-> coeff(g(n), z, k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[If[y + i == v + j, z, 1]*b[x - 1, y + i, v + j], {i, l}], {j, l}]][{-1, 1}]]]];
    g[n_] := g[n] = Sum[b[n, j, j], {j, 0, n}];
    T[n_, k_] := Coefficient[g[n], z, k];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2021, after Alois P. Heinz *)