A339779 Array read by antidiagonals: T(n,k) is the number of homeomorphically irreducible leaf colored trees with n leaves of k colors.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 2, 0, 1, 5, 10, 10, 11, 3, 0, 1, 6, 15, 20, 36, 30, 7, 0, 1, 7, 21, 35, 90, 144, 105, 13, 0, 1, 8, 28, 56, 190, 476, 706, 380, 32, 0, 1, 9, 36, 84, 357, 1251, 3034, 3774, 1555, 73, 0, 1, 10, 45, 120, 616, 2814, 9845, 21380, 22140, 6650, 190, 0
Offset: 0
Examples
Array begins: ============================================================ n\k| 0 1 2 3 4 5 6 7 ---+-------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 0 1 2 3 4 5 6 7 ... 2 | 0 1 3 6 10 15 21 28 ... 3 | 0 1 4 10 20 35 56 84 ... 4 | 0 2 11 36 90 190 357 616 ... 5 | 0 3 30 144 476 1251 2814 5656 ... 6 | 0 7 105 706 3034 9845 26383 61572 ... 7 | 0 13 380 3774 21380 85995 274800 744556 ... 8 | 0 32 1555 22140 163670 812160 3086481 9692480 ... 9 | 0 73 6650 137096 1322960 8092945 36550458 132954360 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- Virginia Perkins Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. South Carolina, 2012. [Table 4.3 is an incorrect version of this table].
Crossrefs
Programs
-
PARI
\\ here R(n,k) is k-th column of A319254. EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v} U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + k*x*g - g^2)} {my(T=Mat(vector(9, k, U(8, k-1)~))); for(n=1, #T~, print(T[n, ]))}
Comments