cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A339650 Triangle read by rows: T(n,k) is the number of trees with n leaves of exactly k colors and all non-leaf nodes having degree 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 6, 3, 0, 1, 10, 30, 36, 15, 0, 2, 27, 140, 310, 300, 105, 0, 2, 74, 663, 2376, 3990, 3150, 945, 0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395, 0, 6, 710, 15642, 123508, 462735, 925890, 1018710, 582120, 135135
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2020

Keywords

Comments

See table 4.2 in the Johnson reference.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   2,    1;
  0, 1,   4,    6,     3;
  0, 1,  10,   30,    36,    15;
  0, 2,  27,  140,   310,   300,   105;
  0, 2,  74,  663,  2376,  3990,  3150,   945;
  0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395;
  ...
		

Crossrefs

Columns k=1..4 are A129860, A220829, A220830, A220831.
Main diagonal is A001147(n-2) for n >= 2.
Row sums are A339651.
Cf. A319541 (rooted), A339649, A339780.

Programs

  • PARI
    \\ here U(n,k) is column k of A339649 as a vector.
    R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    U(n, k)={my(g=x*Ser(R(n, k))); Vec(1 + g + (subst(g + O(x*x^(n\3)), x, x^3) - g^3)/3)}
    M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A339649(n,i).

A339779 Array read by antidiagonals: T(n,k) is the number of homeomorphically irreducible leaf colored trees with n leaves of k colors.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 2, 0, 1, 5, 10, 10, 11, 3, 0, 1, 6, 15, 20, 36, 30, 7, 0, 1, 7, 21, 35, 90, 144, 105, 13, 0, 1, 8, 28, 56, 190, 476, 706, 380, 32, 0, 1, 9, 36, 84, 357, 1251, 3034, 3774, 1555, 73, 0, 1, 10, 45, 120, 616, 2814, 9845, 21380, 22140, 6650, 190, 0
Offset: 0

Views

Author

Andrew Howroyd, Dec 16 2020

Keywords

Comments

Homeomorphically irreducible trees are trees without vertices of degree 2. All non-leaf nodes then have degree >= 3.
Not all colors need to be used.
The Johnson reference has a mistake in formula 4.3. In particular, the final term should be subtracted rather than added. Compare with the first formula given here. The table of results given in the reference is consequently also incorrect.

Examples

			Array begins:
============================================================
n\k| 0  1    2      3       4       5        6         7
---+--------------------------------------------------------
0  | 1  1    1      1       1       1        1         1 ...
1  | 0  1    2      3       4       5        6         7 ...
2  | 0  1    3      6      10      15       21        28 ...
3  | 0  1    4     10      20      35       56        84 ...
4  | 0  2   11     36      90     190      357       616 ...
5  | 0  3   30    144     476    1251     2814      5656 ...
6  | 0  7  105    706    3034    9845    26383     61572 ...
7  | 0 13  380   3774   21380   85995   274800    744556 ...
8  | 0 32 1555  22140  163670  812160  3086481   9692480 ...
9  | 0 73 6650 137096 1322960 8092945 36550458 132954360 ...
     ...
		

Crossrefs

Columns k=1..4 are A007827, A339782, A339783, A339784.
Cf. A319254 (planted), A339649 (degree <= 3), A339780.

Programs

  • PARI
    \\ here R(n,k) is k-th column of A319254.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + k*x*g - g^2)}
    {my(T=Mat(vector(9, k, U(8, k-1)~))); for(n=1, #T~, print(T[n, ]))}

Formula

T(n,k) = k*g(n-1,k) + g(n,k) - Sum_{j=1..n-1} g(j,k)*g(n-j,k) for n > 1 where g(n,k) is A319254(n,k).
G.f. of k-th column: 1 + k*x*r(x) + r(x) - r(x)^2 where r(x) is the g.f. of the k-th column of A319254.

A339785 Number of homeomorphically irreducible leaf colored trees with n leaves using exactly 2 colors.

Original entry on oeis.org

0, 1, 2, 7, 24, 91, 354, 1491, 6504, 29711, 139616, 674696, 3328798, 16730955, 85382210, 441571216, 2310003732, 12206975528, 65082858008, 349756996762, 1892980028014, 10310987833049, 56489307860860, 311112321625754, 1721692801914844, 9569930999155801, 53410232801675436
Offset: 1

Views

Author

Andrew Howroyd, Dec 16 2020

Keywords

Crossrefs

Column k=2 of A339780.

Programs

  • PARI
    my(N=25); (U(N,2)-2*U(N,1))[2..1+N] \\ See A339780 for U(n,k).

Formula

a(n) = A339782(n) - 2*A007827(n).

A339786 Number of homeomorphically irreducible leaf colored trees with n leaves using exactly 3 colors.

Original entry on oeis.org

0, 0, 1, 9, 63, 412, 2673, 17571, 117365, 798819, 5530122, 38908380, 277750749, 2009160864, 14707923021, 108835512411, 813241695330, 6130521151377, 46584949832013, 356571373433217, 2747371943624943, 21296479544449677, 165994877608025730, 1300408539157086640
Offset: 1

Views

Author

Andrew Howroyd, Dec 18 2020

Keywords

Crossrefs

Column k=3 of A339780.

Programs

  • PARI
    my(N=25); (U(N,3) - 3*U(N,2) + 3*U(N,1))[2..1+N] \\ See A339780 for U(n, k).

Formula

a(n) = A339783(n) - 3*A339782(n) + 3*A007827(n).

A339781 Number of homeomorphically irreducible trees with n integer labeled leaves covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 4, 22, 184, 2278, 37076, 747830, 17938120, 498221046, 15716127456, 554857740936, 21672428437044, 927792029298550, 43195423181912812, 2172838098801762500, 117433517088859845912, 6786305674234003471552, 417560119759063983102136, 27254276361313006814819076
Offset: 0

Views

Author

Andrew Howroyd, Dec 16 2020

Keywords

Comments

Homeomorphically irreducible trees are trees without vertices of degree 2.

Crossrefs

Row sums of A339780.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
    U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + k*x*g - g^2)}
    seq(n)={sum(k=0, n, U(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )}

A339787 Number of homeomorphically irreducible leaf colored trees with n leaves using exactly 4 colors.

Original entry on oeis.org

0, 0, 0, 4, 68, 812, 8512, 84312, 814184, 7781712, 74182124, 708344640, 6790655496, 65440865012, 634347822304, 6186652422650, 60707391493004, 599283097168488, 5950282272766412, 59408426130151164, 596269843123151304, 6014472189177940224, 60952019560703982452
Offset: 1

Views

Author

Andrew Howroyd, Dec 18 2020

Keywords

Examples

			There are 2 homeomorphically reduced trees with 4 leafs:
            o          o   o
            |          |   |
        o---o---o      o---o
            |          |   |
            o          o   o
The leaves of the first tree can be colored in 1 way using all four colors and the second can be colored in 3 ways, so a(4) = 1 + 3 = 4.
		

Crossrefs

Column k=4 of A339780.

Programs

  • PARI
    my(N=25); M(N,4)[2..1+N, 5]~ \\ See A339780 for M(n, m).
Showing 1-6 of 6 results.