A339788 Triangle read by rows: T(n,k) is the number of forests with n unlabeled vertices and maximum vertex degree k, (0 <= k < n).
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 6, 2, 1, 1, 3, 11, 13, 6, 2, 1, 1, 4, 17, 30, 15, 6, 2, 1, 1, 4, 25, 60, 39, 15, 6, 2, 1, 1, 5, 36, 128, 94, 41, 15, 6, 2, 1, 1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1, 1, 6, 70, 523, 561, 270, 105, 41, 15, 6, 2, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 2, 4, 2, 1; 1, 3, 7, 6, 2, 1; 1, 3, 11, 13, 6, 2, 1; 1, 4, 17, 30, 15, 6, 2, 1; 1, 4, 25, 60, 39, 15, 6, 2, 1; 1, 5, 36, 128, 94, 41, 15, 6, 2, 1; 1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- Eric Weisstein's World of Mathematics, Maximum Vertex Degree
Crossrefs
Programs
-
PARI
\\ Here V(n, k) gives column k of A144528. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))} V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)} M(n, m=n)={my(v=vector(m, k, EulerT(V(n,k-1)[2..1+n])~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))} { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
Comments