cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339788 Triangle read by rows: T(n,k) is the number of forests with n unlabeled vertices and maximum vertex degree k, (0 <= k < n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 6, 2, 1, 1, 3, 11, 13, 6, 2, 1, 1, 4, 17, 30, 15, 6, 2, 1, 1, 4, 25, 60, 39, 15, 6, 2, 1, 1, 5, 36, 128, 94, 41, 15, 6, 2, 1, 1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1, 1, 6, 70, 523, 561, 270, 105, 41, 15, 6, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 18 2020

Keywords

Comments

A forest is an acyclic graph.
(The component trees here are not rooted. - N. J. A. Sloane, Dec 19 2020)

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 2,  4,   2,   1;
  1, 3,  7,   6,   2,   1;
  1, 3, 11,  13,   6,   2,  1;
  1, 4, 17,  30,  15,   6,  2,  1;
  1, 4, 25,  60,  39,  15,  6,  2, 1;
  1, 5, 36, 128,  94,  41, 15,  6, 2, 1;
  1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1;
  ...
		

Crossrefs

Row sums are A005195.
Cf. A144215 (max degree <= k), A144528, A238414 (trees), A263293 (graphs).

Programs

  • PARI
    \\ Here V(n, k) gives column k of A144528.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={my(v=vector(m, k, EulerT(V(n,k-1)[2..1+n])~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }

Formula

T(n,k) = A144215(n,k) - A144215(n,k-1) for k > 0.