A339802 Decimal expansion of the imaginary part of harmonic number H(1/2 + i*sqrt(3)/2) where i=sqrt(-1).
6, 9, 1, 2, 1, 5, 8, 2, 0, 9, 2, 8, 7, 5, 5, 4, 0, 3, 3, 6, 5, 8, 4, 8, 1, 5, 3, 6, 9, 1, 2, 5, 4, 4, 9, 1, 2, 8, 2, 7, 8, 2, 9, 7, 9, 5, 4, 8, 1, 3, 2, 5, 0, 3, 3, 7, 0, 1, 4, 2, 6, 9, 3, 3, 1, 2, 7, 4, 6, 9, 9, 2, 7, 8, 1, 4, 0, 0, 3, 6, 9, 3, 5, 5, 0, 0, 5, 0, 9, 4, 8, 2, 5, 9, 7, 8, 6, 1, 5, 2, 7, 4, 4, 8, 3
Offset: 0
Examples
0.691215820928755403365848...
Programs
-
Mathematica
RealDigits[N[Im[HarmonicNumber[1/2 + I Sqrt[3]/2]], 105]][[1]]
Formula
Equals (Pi/2)*tanh(Pi*sqrt(3)/2) - sqrt(3)/2.
Equals Im(Psi(3/2 + i*sqrt(3)/2)).
Equals -sqrt(3)/2 + Im(Psi(1/2 + i*sqrt(3)/2)).
Equals Im((1 + i*sqrt(3))*Sum_{k>=0} 1/((1 + k)*(3 + i*sqrt(3) + 2*k))).
Comments