A339805 Numbers k such that the sum of decimal digits of k is the sum of primes dividing k+1 (with repetition).
5, 17, 47, 97, 98, 159, 279, 359, 485, 489, 749, 879, 1679, 1979, 2399, 2499, 3968, 5669, 6749, 7199, 7799, 8099, 8639, 9719, 12799, 19199, 25599, 31999, 37499, 39599, 44799, 68599, 78399, 78749, 79379, 94499, 134999, 143999, 146999, 161999, 172799, 175999, 194399, 199679, 209999, 218699, 259999
Offset: 1
Examples
a(4) = 97 is in the sequence because the sum of digits of 97 is 9+7 = 16 and the sum of primes dividing 98=2*7*7 is 2+7+7 = 16.
Links
- Robert Israel, Table of n, a(n) for n = 1..156
Programs
-
Maple
sod:= n -> convert(convert(n,base,10),`+`): spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc: select(t -> sod(t) = spf(t+1), [$1..10^6]);
-
PARI
isok(m) = my(f=factor(m+1)); sumdigits(m) == f[, 1]~*f[, 2]; \\ Michel Marcus, Dec 18 2020
Comments