cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339816 Numbers k for which A339814(k) >= A339822(k).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 12, 14, 16, 18, 21, 32, 64, 65, 68, 72, 84, 128, 129, 132, 136, 138, 141, 145, 159, 170, 192, 204, 208, 256, 258, 261, 324, 385, 448, 462, 512, 513, 515, 516, 520, 536, 576, 578, 581, 640, 705, 723, 776, 908, 912, 1024, 1036, 1040, 1049, 1160, 1172, 1280, 1352, 1537, 1600, 1609, 1666, 1732, 1795, 2048
Offset: 1

Views

Author

Antti Karttunen, Dec 19 2020

Keywords

Comments

Terms of (1/2)*A048675(A339817(i)), for i = 2.., sorted into ascending order.
First occurrences of terms with binary weight (A000120) w = 1..19 are at n=1, 4, 8, 23, 50, 25, 125, 136, 176, 502, 749, 1142, 791, 1882, 2913, 4327, 17979, 16991, 12441. The terms themselves are: 1, 5, 14, 141, 908, 159, 8921, 9948, 18390, 175449, 400237, 1223389, 441805, 3234271, 28743379, 53892047, 1631024969, 1331412056, 725475951.

Crossrefs

Positions of zeros and negative terms in A339815.
Cf. A000079 (a subsequence).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA339816(n) = { my(x=A019565(2*n)); (valuation(eulerphi(x),2)<=valuation(x-1,2)); };

A339822 The exponent of the highest power of 2 dividing A339821(n).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 6, 3, 4, 5, 6, 4, 5, 6, 7, 4, 5, 6, 7, 5, 6, 7, 8, 5, 6, 7, 8, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 9, 10, 7, 8, 9, 10, 8, 9, 10, 11, 1, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 6, 3, 4, 5, 6, 4, 5, 6, 7, 4, 5, 6, 7, 5, 6, 7, 8, 5, 6, 7, 8, 6, 7, 8, 9, 6, 7
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Programs

  • PARI
    A339822(n) = { my(s=0, p=2); while(n>0, p = nextprime(1+p); if(n%2, s += valuation((p-1),2)); n >>= 1); (s); };

Formula

If 4n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A023506(e1) + A023506(e2) + ... + A023506(ek).
a(n) = A007814(A339821(n)) = A053574(A019565(2n)).

A339815 Let x = A019565(2*n); a(n) is the difference between 2-adic valuations of phi(x) and (x-1).

Original entry on oeis.org

0, 0, 2, 0, 0, 2, 1, 0, -3, 2, 2, 0, 2, -3, 4, 0, 2, -2, 4, 2, 0, 4, 4, 2, 2, 4, 1, 1, 4, 4, 6, 0, 4, 4, 6, 4, 4, 6, 5, 4, 2, 6, 6, 4, 6, 4, 8, 4, 6, 4, 8, 6, 3, 8, 8, 6, 6, 8, 6, 5, 8, 8, 10, 0, -1, 2, 2, 0, 2, 1, 4, -2, 2, 2, 4, 2, 2, 4, 3, 2, 2, 4, 3, -2, 4, 4, 6, 2, 4, 2, 6, 4, 1, 6, 6, 4, 3, 6, 6, 4, 6, 5, 8, 1, 6
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Cf. A339816 (indices of terms < 1).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339815(n) = { my(x=A019565(2*n)); valuation(eulerphi(x),2)-valuation(x-1,2); };

Formula

a(n) = A339822(n) - A339814(n).
a(n) = A007814(A000010(A019565(2n))) - A007814(A019565(2n)-1).

A339813 The exponent of the highest power of 2 dividing (A019565(n) - 1).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 5, 0, 1, 0, 2, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 5, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Comments

The 2-adic valuation of A339809(n).

Crossrefs

Cf. A007814, A339809, A339814 (bisection).

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339813(n) = valuation((A019565(n)-1),2);

Formula

a(n) = A007814(A339809(n)).
Showing 1-4 of 4 results.