cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339820 a(n) = phi(A019565(n)), where phi is Euler totient function.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 6, 6, 12, 12, 24, 24, 48, 48, 10, 10, 20, 20, 40, 40, 80, 80, 60, 60, 120, 120, 240, 240, 480, 480, 12, 12, 24, 24, 48, 48, 96, 96, 72, 72, 144, 144, 288, 288, 576, 576, 120, 120, 240, 240, 480, 480, 960, 960, 720, 720, 1440, 1440, 2880, 2880, 5760, 5760, 16, 16, 32, 32, 64, 64, 128, 128
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Cf. A000010, A019565, A339821 (bisection).
Cf. also A324650, A339809.

Programs

  • PARI
    A339820(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= (p-1)); n >>= 1); (m); };

Formula

If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A006093(e1) * A006093(e2) * ... * A006093(ek).
a(n) = A000010(A019565(n)).