cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339821 a(n) = phi(A019565(2n)), where phi is Euler totient function.

Original entry on oeis.org

1, 2, 4, 8, 6, 12, 24, 48, 10, 20, 40, 80, 60, 120, 240, 480, 12, 24, 48, 96, 72, 144, 288, 576, 120, 240, 480, 960, 720, 1440, 2880, 5760, 16, 32, 64, 128, 96, 192, 384, 768, 160, 320, 640, 1280, 960, 1920, 3840, 7680, 192, 384, 768, 1536, 1152, 2304, 4608, 9216, 1920, 3840, 7680, 15360, 11520, 23040, 46080, 92160
Offset: 0

Views

Author

Antti Karttunen, Dec 18 2020

Keywords

Crossrefs

Bisection of A339820.
Cf. A000010, A003961, A003972, A006093, A019565, A339822 (2-adic valuation).
Cf. also A324651.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339821(n) = eulerphi(A019565(n+n));
    
  • PARI
    A339821(n) = { my(m=1, p=2); while(n>0, p = nextprime(1+p); if(n%2, m *= (p-1)); n >>= 1); (m); };

Formula

If 4n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A006093(e1) * A006093(e2) * ... * A006093(ek).
a(n) = A339820(2n) = A000010(A019565(2n)) = A000010(A019565(2n+1)).