cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339832 Number of bicolored graphs on n unlabeled nodes such that black nodes are not adjacent to each other.

Original entry on oeis.org

1, 2, 5, 14, 50, 230, 1543, 16252, 294007, 9598984, 577914329, 64384617634, 13264949930889, 5055918209734322, 3572106887472105263, 4692016570446185240464, 11496632576435936553085113, 52730955262459923752850296554, 454273406825238417871411598421653
Offset: 0

Views

Author

Andrew Howroyd, Dec 19 2020

Keywords

Comments

The black nodes form an independent vertex set. For n > 0, a(n) is then the total number of indistinguishable independent vertex sets summed over distinct unlabeled graphs on n nodes.

Crossrefs

A049312 counts bicolored graphs where adjacent nodes cannot have the same color.
A000666 counts bicolored graphs where adjacent nodes can have the same color.
Cf. A079491 (labeled case), A339830 (trees), A339836, A340021.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
    U(nb,nw)={my(s=0); forpart(v=nw, my(t=0); forpart(u=nb, t += permcount(u) * 2^cross(u,v)); s += t*permcount(v) * 2^edges(v)/nb!); s/nw!}
    a(n) = {sum(k=0, n, U(k, n-k))}