A339837 Number of bicolored trees on n unlabeled nodes such that black nodes are not adjacent to each other and every white node is adjacent to a black node.
1, 1, 1, 2, 4, 8, 18, 44, 111, 296, 819, 2332, 6808, 20302, 61559, 189413, 590091, 1858187, 5906637, 18932016, 61130413, 198697205, 649706622, 2135958254, 7056831766, 23420011178, 78048740454, 261099605923, 876564670090, 2952491169904, 9975191222798
Offset: 0
Keywords
Examples
a(2) = 1 because exactly one node must be colored black. a(3) = 2 because the only tree is the path graph P_3. If the center node is colored black then neither of the ends can be colored black; otherwise both of the ends must be colored black. In total there are 2 possibilities. There are 3 trees with 5 nodes: o o | | o---o---o o---o---o---o---o o---o---o | | o o These correspond respectively to 3, 3 and 2 solutions, so a(5) = 3 + 3 + 2 = 8.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(u=v=w=[]); for(n=1, n, my(t1=EulerT(v), t2=EulerT(u+v)); u=concat([1], EulerT(v+w)); v=concat([0], t2-t1); w=concat([1], t1)); my(g=x*Ser(u+v), gu=x*Ser(u), gw=x*Ser(w)); Vec(1 + g + (subst(g,x,x^2) - subst(gu,x,x^2) - g^2 - 2*gu*gw + gu^2)/2)}
Comments