A339857 Smallest side of integer-sided primitive triangles whose sides a < b < c form a geometric progression.
4, 9, 16, 25, 25, 25, 36, 49, 49, 49, 49, 64, 64, 81, 81, 81, 81, 100, 100, 121, 121, 121, 121, 121, 121, 144, 144, 144, 169, 169, 169, 169, 169, 169, 169, 169, 196, 196, 196, 225, 225, 225, 225, 225, 256, 256, 256, 256, 256, 289, 289, 289, 289, 289, 289, 289, 289, 289, 289
Offset: 1
Keywords
Examples
a(1) = 4 for only the smallest such triangle (4, 6, 9). a(4) = 25 for triple (25, 30, 36) with 25 * 36 = 30^2 and ratio q_1 = 6/5, hence for this triangle, C < Pi/2 because 1 < q_1 = 6/5 < sqrt(phi); also a(5) = 25 for the triple (25, 35, 49) with 25 * 49 = 35^2 and ratio q_2 = 7/5; then a(6) = 25 for the triple (25, 40, 64) with 25*64 = 40^2 and ratio q_3 = 8/5, hence, for these two last triangles, C > Pi/2 because sqrt(phi) < q_2 < q_3 < phi.
Links
- Project Euler, Problem 370: Geometric Triangles.
Crossrefs
Programs
-
Maple
for a from 1 to 300 do for b from a+1 to floor((1+sqrt(5))/2 *a) do for c from b+1 to floor((1+sqrt(5))/2 *b) do k:=a*c; if k=b^2 and igcd(a,b,c)=1 then print(a); end if; end do; end do; end do;
-
PARI
lista(nn) = {my(phi = (1+sqrt(5))/2); for (a=1, nn, for (b=a+1, floor(a*phi), for (c=b+1, floor(b*phi), if ((a*c == b^2) && (gcd([a, b, c])==1), print1(a, ", ")); ); ); ); } \\ Michel Marcus, Dec 26 2020
Formula
a(n) = A339856(n, 1).
Comments