A339870 Composite numbers k of the form 4u+1 for which the odd part of phi(k) divides k-1.
85, 561, 1105, 1261, 1285, 2465, 4369, 6601, 8245, 8481, 9061, 9605, 10585, 16405, 16705, 17733, 18721, 19669, 21845, 23001, 28645, 30889, 38165, 42121, 43165, 46657, 54741, 56797, 57205, 62745, 65365, 74593, 78013, 83665, 88561, 91001, 106141, 117181, 124645, 126701, 134521, 136981, 141661, 162401, 171205, 176437
Offset: 1
Keywords
Examples
85 = 4*21 + 1 = 5*17, thus phi(85) = 4*16 = 64, the odd part of which is A000265(64) = 1, which certainly divides 85-1, therefore 85 is included as a term. 561 = 4*140 + 1 = 3*11*17, thus phi(561) = 2*10*16 = 320, the odd part of which is A000265(320) = 5, which divides 560, therefore 561 is included.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1316
- D. H. Lehmer, On Euler's totient function, Bulletin of the American Mathematical Society, 38 (1932), 745-751.
- Wikipedia, Lehmer's totient problem
Crossrefs
Programs
-
Mathematica
odd[n_] := n/2^IntegerExponent[n, 2]; Select[4*Range[45000] + 1, CompositeQ[#] && Divisible[# - 1, odd[EulerPhi[#]]] &] (* Amiram Eldar, Feb 17 2021 *)
-
PARI
A000265(n) = (n>>valuation(n, 2)); isA339870(n) = ((n>1)&&!isprime(n)&&(1==(n%4))&&!((n-1)%A000265(eulerphi(n))));
Comments