A339886 Numbers whose prime indices cover an interval of positive integers starting with 2.
1, 3, 9, 15, 27, 45, 75, 81, 105, 135, 225, 243, 315, 375, 405, 525, 675, 729, 735, 945, 1125, 1155, 1215, 1575, 1875, 2025, 2187, 2205, 2625, 2835, 3375, 3465, 3645, 3675, 4725, 5145, 5625, 5775, 6075, 6561, 6615, 7875, 8085, 8505, 9375, 10125, 10395, 10935
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 3: {2} 9: {2,2} 15: {2,3} 27: {2,2,2} 45: {2,2,3} 75: {2,3,3} 81: {2,2,2,2} 105: {2,3,4} 135: {2,2,2,3} 225: {2,2,3,3} 243: {2,2,2,2,2} 315: {2,2,3,4} 375: {2,3,3,3} 405: {2,2,2,2,3} 525: {2,3,3,4} 675: {2,2,2,3,3} 729: {2,2,2,2,2,2} 735: {2,3,4,4} 945: {2,2,2,3,4}
Crossrefs
The version starting at 1 is A055932.
The partitions with these Heinz numbers are counted by A264396.
Positions of 1's in A339662.
A000009 counts partitions covering an initial interval.
A000070 counts partitions with a selected part.
A016945 lists numbers with smallest prime index 2.
A034296 counts gap-free (or flat) partitions.
A073491 lists numbers with gap-free prime indices.
A325240 lists numbers with smallest prime multiplicity 2.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; Select[Range[100],normQ[primeMS[#]-1]&]
Comments