A339890 Number of odd-length factorizations of n into factors > 1.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 5, 1, 2, 1, 2, 1, 2, 1, 8, 1, 1, 2, 2, 1, 2, 1, 6, 2, 1, 1, 5, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 24, 48, 60, 72, 96, 120: 24 48 60 72 96 120 2*2*6 2*3*8 2*5*6 2*4*9 2*6*8 3*5*8 2*3*4 2*4*6 3*4*5 2*6*6 3*4*8 4*5*6 3*4*4 2*2*15 3*3*8 4*4*6 2*2*30 2*2*12 2*3*10 3*4*6 2*2*24 2*3*20 2*2*2*2*3 2*2*18 2*3*16 2*4*15 2*3*12 2*4*12 2*5*12 2*2*2*3*3 2*2*2*2*6 2*6*10 2*2*2*3*4 3*4*10 2*2*2*3*5
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
The case of set partitions (or n squarefree) is A024429.
The case of partitions (or prime powers) is A027193.
The remaining (even-length) factorizations are counted by A339846.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
Programs
-
Maple
g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+ `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)), d=numtheory[divisors](n) minus {1, n})) end: a:= n-> `if`(n<2, 0, g(n$2, 1)): seq(a(n), n=1..100); # Alois P. Heinz, Dec 30 2020
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],OddQ@Length[#]&]],{n,100}]